
PDE for Lookback Option

Math 622

February 27, 2014

Reading material: Ocone’s Lecture note 6

1 Preliminary discussion

Let S(t) satisfies

dSt = rStdt+ σ(t, St)StdWt

S(0) = x > 0.

Note that σ is a function of t, St here, in stead of being a constant. We call this the

local volatility model and make the assumption that σ(t, x) > 0 for all t, x.

Consider the Lookback Option:

VT = max
[0,T ]

St − ST .

Then by risk neutral pricing

Vt = E
(
e−r(T−t) max

u∈[0,T ]
Su

∣∣∣F(t)
)
− St.

Similar to what we did in Lecture 5a notes, define

Y (t) = max
[0,t]

S(u),

then for s > t

Y (s) = max{Y (t), max
u∈[t,s]

S(u)}

In Homework 5, we have discussed that when σ is constant, then {Y (t), S(t)} is a

Markov process. The argument is by Independence Lemma. For the current local
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volatility model, the Independence Lemma no longer applies, since we cannot

conclude that
∫ T

t
σ(u, S(u))dWu is independent of F(t). However, it is still true

that {Y (t), S(t)} is Markov. Indeed, we have the following principle:

Principle: If S(t), t ≥ 0 is Markov with respect to F(t) and Y (t) = maxu∈[0,t] S(u)

then {Y (t), S(t)} is also Markov with respect to F(t).

We call it a principle instead of a theorem because we will not give it a proof due to

technical details. Thus we also have

V (t) = E
[
e−r(T−t)VT

∣∣∣F(t)
]

= E
[
e−r(T−t) max

[0,T ]
{St}

∣∣∣F(t)
]
− S(t)

= E
[
e−r(T−t) max{Y (t), max

u∈[t,T ]
Su}
∣∣∣F(t)

]
− S(t)

= v(t, S(t), Y (t)),

where

v(t, x, y) = E
[
e−r(T−t) max{Y (t), max

u∈[t,T ]
Su}
∣∣∣S(t) = x, Y (t) = y

]
.

Remark 1.1. Note that here VT = G(YT , ST ) where G(x, y) = y − x. For this case,

we call the option floating strike lookback option. Clearly one can consider

other types of function G as well. The only difference this would affect on the PDE

is the boundary conditions. See Section (6) for more details.

Now assuming that v is C1,2,2, that is once continuously differetiable in t and twice

continuously differentiable in x, y, we would like to derive a PDE that v satisfies.

But note the following difference in our current case: Y (t) is not a C1,2 function of

S(t) so we cannot write down its dynamics using Ito’s formula. In other words, we

do not know what dY (t) is explicitly.

However, observe that for s < t

Y (s) = max
u∈[0,s]

S(u) ≤ max
u∈[0,t]

S(u) = Y (t),

simply because the max over a bigger set is not smaller than the max over a

(smaller) set contained in it. Therefore Y (t) is an increasing (meaning it is

non-decreasing) function.
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From the discussion of the Lebesgue-Stieltjes integral of Chapter 11, we have

learned how to integrate with respect to functions of bounded variation. Recall that

increasing function is of bounded variation. Therefore, it makes sense to talk about

dY (t) (in the Lebesgue-Stieltjes integral sense, that is).

However, we did not discuss the Ito’s formula for v(t, S(t), Y (t)) where S(t) is an Ito

process and Y (t) is an increasing process. But suppose we just formally carry out

the usual Ito’s rule to e−rtv(t, S(t), Y (t)) , what we should get is

de−rtv(t, S(t), Y (t)) = e−rt
{

[−rv(t, x, y) +
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx

+
1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2]

∣∣∣
(x,y)=(St,Yt)

}
dt

+e−rt
∂

∂x
v(t, St, Yt)σ(t, St)StdWt + e−rt

∂

∂y
v(t, St, Yt)dYt

+e−rt
∂2

∂xy
v(t, St, Yt)d〈S, Y 〉(t) + e−rt

∂2

∂y2
v(t, St, Yt)d〈Y 〉(t).

Remark 1.2. We will discuss what d〈S, Y 〉(t) and d〈Y 〉(t) means in the following

section. For now, you can formally replace d〈S, Y 〉(t) with dS(t)dY (t) and d〈Y 〉(t)
with [dY (t)]2 to get an intuition.

Since

e−rtVt = e−rtv(t, S(t), Y (t)),

e−rtv(t, S(t), Y (t)) is a martingale. On the RHS of the above equation, the only

martingale term we have is

∂

∂x
v(t, St)σ(t, St)StdWt.

The principle of deriving our PDE is that any other terms that do not contribute to

the martingale property of the RHS should be set to 0. But before we can do that,

we need to understand the following:

(i) Is the Ito’s rule that we just formally applied correct? (If it is not correct there is

no point in discussing the items below).

(ii) What are d〈S, Y 〉(t) and d〈Y 〉(t) ?

(iii) How to understand dY (t)?

We will address these questions in the folowing order (ii), (i) and (iii) and then

derive the PDE for v(t, x, y) after that.
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2 The quadratic variation and covariation

Fix T > 0. Let X(t), Y (t) be functions defined on [0, T ]. Recall the following

definitions:

Definition 2.1. The total variation of Y on [0, T ], denoted as TVY (T ) is defined as

the smallest (finite) number such that for all partitions

0 = t0 < t1 < t2 < ... < tn = T

n−1∑
i=0

|Y (ti+1)− Y (ti)| ≤ TVY (T ).

If there is no such number, we define TVY (T ) =∞.

We also say Y is a function of bounded variation (on [0, T ]) if TVf (T ) <∞.

Definition 2.2. The quadratic variation of Y on [0, t], if it exists is defined as

〈Y 〉(t) = lim
n→∞

n−1∑
i=0

|Y (tni+1)− Y (tni )|2,

where the limit is taken in probability, and for each fixed n,

0 = tn0 < tn1 < tn2 < ... < tnn = t is a partition of [0, t] such that its mesh size:

maxi |tni+1 − tni | goes to 0 as n→∞.

Definition 2.3. The covariation between X and Y on [0, t], if it exists is defined as

〈X, Y 〉(t) = lim
n→∞

n−1∑
i=0

(
X(tni+1)−X(tni )

)(
Y (tni+1)− Y (tni )

)
,

where the limit is taken in probability, and for each fixed n,

0 = tn0 < tn1 < tn2 < ... < tnn = t is a partition of [0, t] such that its mesh size:

maxi |tni+1 − tni | goes to 0 as n→∞.

Note: Some authors (including Shreve in our textbook, see Exercise 7.4) called the

covariation the cross quadratic variation.

We will also state the following facts about quadratic variation and covariation. The

proof is more or less contained in the extra credit problem in Homework 1.

(i) If Y is increasing then Y is of bounded variation.

(ii) If Y is continuous and of bounded variation, then 〈Y 〉(t) = 0.

4



(iii) If Y is of bounded variation and X is continuous, then 〈X, Y 〉(t) = 0.

(iv) The quadratic variation 〈X〉(t) and covariation 〈X, Y 〉(t) of any two processes

X, Y , if exist, are of bounded variation on [0, T ]. Therefore, it makes sense to talk

about d〈X〉(t) and d〈X, Y 〉(t).

Applying these facts to our situation, we see that indeed

〈Y 〉(t) = 0

〈S, Y 〉(t) = 0

So question (ii) of Section 1 is answered.

3 An extension of Ito’s formula

We now give answer to question (i) of Section 1. Let W (t) be a BM and F(t) a

filtration for W (t).

X i(t) = X i(0) +

∫ t

0

αi(s)ds+

∫ t

0

σi(s)dW (s) + Ai(t), i = 1, 2

where αi, σi, Ai are stochastic processes adapted to F(t), σi are chosen so that the

stochastic integral is well-defined, and Ai(t) are continuous functions of bounded

variations. Let f(t, x1) be a C1,2 function. Then

df(t,X1(t)) =
[ ∂
∂t
f +

(
∂

∂x1
f

)
α1
t +

1

2

(
∂2

∂(x1)2
f

)
(σ1

t )2
]
dt

+

(
∂

∂x1
f

)
σ1(t)dW (t) +

(
∂

∂x1
f

)
dA1(t).

Let f(t, x1, x2) be a C1,2,2 function. Then

df(t,X1(t), X2(t)) =
[ ∂
∂t
f +

2∑
i=1

{( ∂

∂xi
f

)
αi
t +

1

2

(
∂2

∂(xi)2
f

)
(σi

t)
2 +

(
∂2

∂x1x2
f

)
σ1
t σ

2
t

}]
dt

+
{ 2∑

i=1

(
∂

∂xi
f

)
σi(t)

}
dW (t) +

2∑
i=1

(
∂

∂xi
f

)
dAi(t).

where by f we understand as f(t,X1(t), X2(t)).

5



Remark 3.1. We do not give a proof of this extension. But you can see the formula

is just the application of Ito’s formula as we used to do, combined with the facts

about quadratic variation and covariation of bounded variation process that we

discussed in Section 2.

Remark 3.2. It is true that
∫ t

0
αi(s)ds is also a continuous function of bounded

variation. So what is the difference between
∫ t

0
αi(s)ds and Ai(t)? Can we combine

them into just 1 term? The answer is no, because these two terms have very

different property. We say the term
∫ t

0
αi(s)ds is absolutely continuous (with

respect to the Lebesgue measure dt). Basically this means it can be represented as an

integral with respect to dt (which it is already in that form). The term Ai(t) in this

formula is meant to be singularly continuous (with respect to the Lebesgue

measure dt). For our purpose, what it means is that even though Ai(t) is continuous

we cannot represent Ai(t) as an integral with respect to dt. Therefore, the two terms

should be kept separate.

Remark 3.3. You should compare and contrast these Ito formulas with the ones we

obtained in Chapter 11. There, the Ai(t) are the pure jump processes. So while here

we have the term
(

∂
∂xi
f
)
dAi(t); in Chapter 11 the corresponding term is∑

0<s≤t f(X i(s))− f(X i(s−)). We mentioned that it’s not always possible to get the

differential form in the Ito’s formula in Chapter 11. Here note that it is always in

differential form.

3.1 An intuition on the difference between the 2 Ito’s

formulae

For simplicity, let’s just consider 2 cases:

(i) X1(t) = A(t)

A is continuous and of bounded variation.

(ii) X2(t) = J(t),

J is pure jump.

Let f be C1 function. Then (from Ito’s formula) we have

f(X1
t ) = f(X1

s ) +

∫ t

s

f ′(X1
u)dX1(u);

f(X2
t ) = f(X2

s ) +
∑
s<u≤t

f(X2(u))− f(X2(u−)).
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Note the derivative in the 1st case and the original function in the 2nd case. Why is

this? We always have the following identity (assuming X1
t −X1

s 6= 0)

f(X1
t )− f(X1

s ) =
f(X1

t )− f(X1
s )

X1
t −X1

s

(X1
t −X1

s ).

And so intuitively, we have for s very close to t,

f(X1
t )− f(X1

s ) ≈ f ′(X1(s))(X1
t −X1

s )

≈ f ′(X1(s))dX1(s).

This is correct, if X1
t → X1

s as t→ s, which requires the continuity of X1(t) (so

that the difference quotient approximates the derivative of f). But in the case of

X2, if X2 is not continuous at s (it has a jump at s), then we cannot say the

difference quotient approximates the derivative of f at X2(s) in any sense.

Therefore, we cannot write it in the differential form, and can only write it as the

form we always used in Chapter 11.

4 The integral dY t

4.1 Some preliminary discussion

Recall that we define Yt := maxu∈[0,t] Su to be the running max of St. We have

observed that Yt is non-decreasing. But can we say more? For example, is there any

interval where Y is strictly increasing, not just non-decreasing? To anwer that, we

make the following observation (recall that by definition, S(t) ≤ Y (t)):

(i) Suppose that S(t) < Y (t) for all t ∈ [a, b]. Then Y (t) is constant on [a, b] (Note

the strict inequality).

Reason:

Y (b) = max(Y (a),max
[a,b]

S(t)).

Suppose by contradiction that Y (b) > Y (a). Then it must follow that

Y (b) = max
[a,b]

S(t).
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However, this contradicts with our assumption that S(t) < Y (t) for all t ∈ [a, b]

since it would imply S(t) < Y (t) ≤ Y (b) for all t ∈ [a, b] which lead to

max[a,b] S(t) < Y (b), not equality.

(ii) Suppose Y (t) is strictly increasing on [a, b] (that is for all u < v in

[a, b], Y (u) < Y (v)) then Y (t) = S(t) for all t ∈ [a, b] and thus it also follows that

S(t) is also strictly increasing on [a, b].

Reason:

Suppose there is u in [a, b] such that S(u) < Y (u). Then because S(t) is continuous,

we can find ε > 0 small enough such that S(t) ≤ Y (u) on [u, u+ ε]. But then it

follows that for u < v in [a, b] we have

Y (u+ ε) = max(Y (u), max
t∈[u,u+ε]

S(t)) = Y (u),

contradicting our assumption that Y (t) is strictly increasing. So it must be that

S(t) = Y (t) for all t ∈ [a, b]. Now since they’re equal, the 2nd conclusion obviously

follows.

Thus from observation (ii), we see that if we can find any interval [a, b] where Y (t)

is strictly increasing (so that dY (t) > 0 on [a, b]) then S(t) also have to be strictly

increasing there as well. There is a fact of real analysis which says a function that is

strictly increasing must be differentiable almost every where and its derivative

positive where it is differentiable. However, we also know that BM is nowhere

differentiable (with probability 1). S(t) being an exponential function of BM also

must be nowhere differentiable. Thus it cannot be the case that we can find an

interval where Y (t) is strictly increasing.

There are examples in real analysis of functions on [0, 1] which is continuous,

increasing, whose derivative equals to 0 almost everywhere, yet f(0) = 0 and

f(1) = 1. The Cantor function is such an example. In this case we can also not find

any interval where the Cantor function is strictly increasing. For this reason, we say

that the running max Y (t) exhibits “Cantor-like” property.

4.2 Support of Y (t)

Reading material: Ocone’s lecture note 6 Section 2
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4.2.1 Preliminary discussion

From observation (ii) of the above subsection, we see that the set of points t where

dY (t) > 0 must be small (in the sense that it cannot be an interval). So the set

{dY (t) = 0} should be large in some sense. Observe, however, that it cannot be the

case that dY (t) = 0 for all t ∈ [0, T ] either. Because it would imply that

Y (T ) = Y (0) +

∫ T

0

dY (s) = Y (0),

which would force S(t) to be constant on [0, T ] which is not the case. Indeed, we can

repeat the argument to get that on any subinterval [u, v] of [0, T ] the probability

that Y (v) > Y (u) is positive (otherwise, with probability 1, Y (u) = Y (v) which

would force S(u) = S(v) with probability 1, which is again not the case).

So there must be a set of points on [0, T ] where dY (t) > 0 with probability 1. From

observation (i) and (ii) again, this set must be a subset of the set

C = {t ∈ [0, T ] : Y (t) = S(t)}.

(It could be equal to C, whether or not this is the case is not important to us).

Note that C is a random set: for different event ω, C(ω) may be different. We call

C the support of Y . See prof. Ocone’s notes for more discussion on support of a

continuous increasing function.

Remark 4.1. Since Y (t) is continuous, it follows that for any fixed t0 ∈ [0, T ],

dY (t0) = 0. So in the above discussion, when we say dY (t) > 0 on some set E,

what we really mean is ∫ T

0

1E(s)dY (s) > 0.

and when we say dY (t) = 0 on some set E, what we really mean is∫ T

0

1E(s)dY (s) = 0.

Remark 4.2. The one important property you should remember about the support

C is this: if E is a measurable set contained in Cc, then∫ T

0

1E(s)dY (s) = 0.

The intuition if that outside the support C (on the set {t ∈ [0, T ] : S(t) < Y (t)}),

Y (t) is constant so integrate against dY (t) outside the support should give you 0.
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Remark 4.3. The one important topological property of C is that it is closed, yet it

is not the whole interval [0, T ] (see the below section on Main results). This has the

important consequence that its nonempty complement is open, in the sense that for

any point in Cc, we can find an interval around it that is also in Cc. In other words,

for any t0 ∈ Cc, we can find ε > 0 so that∫ t0+ε

t0−ε
g(s)dY (s) = 0,

for any measurable function g. This is important because we would like to

differentiate the function

G(t) :=

∫ t

0

g(s)dY (s),

at the point t0. What the above equation says is G(t) is constant on [t0 − ε, t0 + ε],

which allows us to take the derivative at t0. If we cannot find any ε > 0 such that on

[t0 − ε, t0 + ε], the function G(t) is well-behaved, (remember the integral is against

dY (t), so automatic regularity of G(t) is not guaranteed ) then taking derivative at

t0 is not justified.

4.2.2 Main results

We already discussed the fact that C cannot contain any interval. But even more is

true by the following theorem:

Theorem 4.4. Let S(t) satisfies

dSt = α(t)Stdt+ σ(t)StdWt

S(0) = x > 0,

where α, σ can be random processes. We require σ(t) > 0. Define the set C as the

support of Y as above. Then with probability 1,∫ ∞
0

1C(ω)(s)ds = 0.

In words, the Lesbegue measure of the set C(ω) is 0 with probability 1. The

importance of this theorem to us (in deriving the PDE) is in the following corollary.
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Corollary 4.5. Suppose S(t) satisfies the hypothesis of theorem (4.4). Let α(s),

g(s) be continuous process. Then∫ t

0

α(s)ds+

∫ t

0

g(s)dY (s) = 0∀t > 0

if and only if α(t) = 0 and g(t)1{Y (t)=S(t)} = 0 for all t > 0.

Proof. Suppose α(t) = 0 and g(t)1{Y (t)=S(t)} = 0 . Then since on Cc, dY (t) = 0,

we have∫ t

0

α(s)ds+

∫ t

0

g(s)dY (s) =

∫ t

0

g(s)1CdY (s) +

∫ t

0

g(s)1CcdY (s) = 0.

We now show the forward direction. Let t0 ∈ Cc. Then this implies that

S(t0) < Y (t0) and since S(t) is continuous, there exists an interval [a, b] around t0 so

that S(t) ≤ Y (t) on [a, b]. Thus dY = 0 on [a, b] as well and it follows that∫ t

0
g(s)dY (s) is a constant on [a, b] and hence differentiable at t0 with derivative

being 0. On the other hand ∂
∂t

∫ t

0
a(s)ds = a(t) for all t. Thus by taking derivative of

the equation ∫ t

0

α(s)ds+

∫ t

0

g(s)dY (s) = 0

at t0, we conclude that a(t0) = 0 for all t0 ∈ Cc.

Now let t0 ∈ C. Since C contains no interval, for any n, there exists tn ∈ Cc in

[t0 − 1/n, t0 + 1/n]. But then tn → t and hence a(t) = 0 by continuity of a. Thus

a(t) = 0 for all t. It follows that∫ t

0

g(u)1{Y (u)=S(u)}dY (u) = 0,∀t,

or ∫ t

s

g(u)1{Y (u)=S(u)}dY (u) = 0,∀s ≤ t.

By choosing s close to t, we can assume that g is either non-negative or non-positive

on [s, t] by its continuity. Then this equality says the integral of g, over the support

of Y intersect with [s, t] is 0. The support of Y is the closure of the set of points

where dY (t) > 0. Thus it must follow that g(u) = 0 on the support of Y (by

choosing s close to t we do not have to worry about g changing sign on [s, t]).

Outside the support of Y , 1{Y (u)=S(u)} = 0. Thus g(u)1{Y (u)=S(u)} = 0 for all u.
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5 The dynamics of Y

From section 3, we gave the Ito’s formula extension to stochastic process with

singular continuous component Ai(t). We want to apply the Ito’s formula to

v(t,Xt, Yt) where Yt is a singularly continuous process. But so far we still have not

argued about this fact. In other words, is there a possibility that Y can still be

represented as an Ito’s process? That is, does there exist α(t), β(t) such that

dY (t) = αtdt+ βtdW (t). (1)

This indeed cannot happen, as the following Lemma shows

Lemma 5.1. Let Yt be the running maximum of St where St satisfies the hypothesis

of Theorem (4.4). Then Yt cannot be representable in the form of equation (1).

In other words, Yt is a singularly continuous process.

Proof. The proof of the Lemma relies on Theorem (4.4) and the following result:

For any t > 0,P(Yt > Y0) = 1.

We have discussed before that for t > 0,P(Yt > Y0) must be > 0. Turns out it is

true that this probability is actually 1. We now prove the Lemma by contradiction.

Suppose there exist α(t), β(t) such that

dY (t) = αtdt+ βtdW (t).

Then since Y (t) is increasing, by the result in Section 2, 〈Y 〉t =
∫ t

0
β2
sds = 0. But

this means βs = 0,∀s. Then Y (t) = Y0 +
∫ t

0
αsds. But that means Y is differentiable

and Y ′(t) = αt for all t. From Theorem (4.4), we learned that Y ′(t) = 0 on the set

{S(t) < Y (t)}. But that means αt = 0 on {S(t) < Y (t)}. Since the set

{S(t) = Y (t)} has Lebesgue measure 0, it follows that

Y (t) = Y0 +

∫ t

0

αsds = Y0,

which contradicts the fact we just state and the proof is complete.
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6 Derivation of the PDE

Putting all the above information together, we have

e−rtv(t, S(t), Y (t)) = v(0, S(0), Y (0)) +

∫ t

0

e−ru[Lv(u, Su, Yu)− rv(u, Su, Yu)]du

+

∫ t

0

e−ru
∂

∂y
v(u, Su, Yu)dYu +

∫ t

0

e−ru
∂

∂x
v(u, Su, Yu)σ(u, Su)SudWu.

where

Lv(t, x, y) =
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx+

1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2.

Since the LHS is a martingale, we set∫ t

0

e−ru[Lv(u, Su, Yu)− rv(u, Su, Yu)]du+

∫ t

0

e−ru
∂

∂y
v(u, Su, Yu)dYu = 0,∀t.

Apply Corollary (4.5) we conclude that

−rv(t, x, y) +
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx+

1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2 = 0; t < T, 0 < x ≤ y <∞

∂

∂y
v(t, y, y) = 0; t ≤ T, y > 0 (2)

v(T, x, y) = y − x; (3)

v(t, 0, y) = e−r(T−t)y. (4)

Condition (2),(3),(4) are boundary conditions. Condition (2) is called a Neumann

condition, since it imposes the value of a derivative of v on the boundary .

Condition (4) comes from the fact that once S(t) hits 0 at time t it stays there so

the running max is a constant on [t, T ]: Y (u) = Y (t), u ≥ t. Thus we get

v(t, 0, Y (t)) = E(e−r(T−t)Y (T )|F(t))

= E(e−r(T−t)Y (t)|F(t)) = e−r(T−t)Y (t).

More generally, suppose we consider the generalized lookback option:

V (T ) = G(S(T ), Y (T )),

then the same argument shows that V (t) = v(t, S(t), Y (t)) where v(t, x, y) satisfies

13



the PDE

−rv(t, x, y) +
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx+

1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2 = 0; t < T, 0 < x ≤ y <∞

∂

∂y
v(t, y, y) = 0; t ≤ T, y > 0 (5)

v(T, x, y) = G(x, y); 0 ≤ x ≤ y (6)

v(t, 0, y) = e−r(T−t)G(0, y). (7)
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